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Driving tasks: 

- Perceiving the environment 
- Planning how to reach from point A to B 
- Controlling the car 

Operational Design Domain (ODD) 
The purpose of ODD monitoring is to determine whether or not the ADS is in a situation that it 
was designed to handle safely. The ODD can also be described as the “functional system 
boundary”. For example, if the ODD contains only unsignalized intersections, the ADS must not 
enter intersections controlled by traffic lights. If ODD monitoring determines that the ADS has 
violated, or is about to violate, the bounds of the ODD, then it is expected to initiate a Dynamic 
Driving Task (DDT) fallback in order to achieve a minimal risk condition. A DDT fallback for a 
level 3 ADS is human intervention and a DDT fallback for a level 4 or 5 ADS is executed by the 
ADS itself. 
How to classify driving system automation? 

- Driver attention requirement 
- Driver action requirement 
- What exactly makes up a driving task? 

What makes up a driving task? 
- Lateral control: steering 
- Longitudinal control: braking, acceleration 
- Object and Event Detection and Response: detection and reaction 
- Planning: long term and short term 
- Misc: signal indicators, interacting with other drivers 

Autonomous capabilities: automate the driving task 
- Automated lateral control 
- Automated longitudinal control 
- Complete vs Restricted ODD 
- OEDR 

- Automatic emergency response 
- Driver supervision  

Level 0: no automation: regular vehicles 
Level 1: Driving assistance: either longitudinal control or lateral control, but not both 
Examples: Adaptive Cruise Control: can control speed, but driver steers 
Lane keeping:  
Level 2: Partial driving automation: 
Both longitudinal control and lateral control 
Examples: GM super cruise and Nissan ProPilot Assist 
Level 3: Conditional driving automation: driver can take their attention off compared to level 2 
Includes OEDR 
Example: Audi A8 Sedan 

http://wavelab.uwaterloo.ca/sharedata/ME597/


Level 4: High Driving Automation 
Handles emergencies autonomously, driver can entirely focus on other tasks. 
But limited ODD 
Level 5: Fully Driving Automation 
Unlimited ODD 

Environment Perception 
Make sense of the environment and ourselves. 
Two major tasks: identification and understanding motion  
Why? To inform our driving decisions

 
Goals for perception 

- Identify static objects: Road and lane markings, curbs, traffic lights, road signs, 
construction signs, obstructions 

- Identify dynamic objects: vehicles, pedestrians, cyclists 
- Ego localization: Position, velocity, acceleration, orientation and angular motion 

Challenges to perceptions 
- Robust detection and segmentation 
- Sensor uncertainty: GPS, lidar and radar 
- Occlusion, reflection 
- Illumination, lens flare 
- Weather precipitation  

Planning 
Making decisions 

- Long term planning: how to navigate from NYC to LA? Mission plan. 
- Short term policy: can I change my lane to the lane right of me? Can I pass the 

intersection and join the left road? 
- Intermediate decisions/reactions: involves control and trajectory planning 

- Can I stay on track on this curved road? 
- Accelerate or brake by how much? 

Example: 
Taking a left turn in an intersection 

- It involves many short-term planning decisions. 
- There are situations arise on the way: object and event detection and response, another 

vehicle stops in front and we need to make room for the other vehicle. If the stop line is 
not marked, we want to approximate and infer the implied where the stopline is. All the 



decisions are immediate decisions and require safe reaction to the planning system.The 
end result is an exploding list of possible decisions to evaluate on different timescales, 
even for a simple left turn scenario. This amounts to talking about different cases for the 
same intersection crossing or scenarios. In each scenario, we need a consistent set of 
choices to be evaluated in real time and updated as new information about the scene 
becomes available. Furthermore, because decisions to change lanes affect where to 
drive and which cars to regulate our position relative to, even a seemingly simple driving 
scenario requires three or four levels of decisions, and must then still be executed with 
careful vehicle control. 

- Simple maneuver, yet it takes 3-4 levels of decisions and control to execute 
- It takes many rules to drive 

- Safely 
- Efficiently  
- Following all traffic rules 
- Only following rules that everyone else is following 

- Driving decision making is complicated 
Rule based planning 

- Decision trees 
- We have rules to take into account the current state of ego and other objects and give 

decisions. 
- Examples: 

- If there is a pedestrian on the road, stop 
- If speed limit changes, adjust speed to match it. 

Predictive planning 
- Make predictions about other vehicles and how they are moving. Then use these 

predictions to inform our decisions. 
- Examples: 

- A cars has stopped for 10 seconds, and might be going to stop for another 10 
seconds 

- Pedestrian is jaywalking. She will enter our lane by the time we reach her.  
Sensors 

- Sensors: device that measures and detects a property of the environment or changes to 
a property 

- Categories:  
- Exteroceptive: detect the environment/ surroundings 
- Proprioceptive: internal sensors/ one’s own 

Exteroceptive sensors 
Sensors for perception: Camera 

- Essential for correctly perceiving environment 
- Comparison metrics: 

- Resolution: resolution is the number of pixels that create the image. 



- Field of view: The field of view is defined by the horizontal and vertical angular 
extent that is visible to the camera, and can be varied through lens selection and 
zoom.  

- Dynamic range: The dynamic range of the camera is the difference between the 
darkest and the lightest tones in an image. High dynamic range is critical for 
self-driving vehicles due to the highly variable lighting conditions encountered 
while driving especially at night. 

- Trade-off between resolution and FOV 
- Focal length, depth of field and frame rate 
- Stereo camera: enables depth estimation from image data, which produces a disparity of 

a scene 
LIDAR which stands for light detection and ranging sensor. LIDAR sensing involves shooting 
light beams into the environment and measuring the reflected return. It details 3D scene 
geometry from LIDAR point cloud 

- Comparison metrics: 
- Number of beams 
- Points per second 
- Rotation rate 
- Field of view 
- Upcoming: solid state LIDAR 

RADAR: radio detection and ranging. Robust object detection and relative speed estimation. 
It works in poor visibility like fog and precipitation. 

- Comparison metrics: 
- Detection range 
- FOV 
- Position and speed accuracy 

- Configurations 
- WFOV but short range 
- NFOV but long range 

Ultrasonic: Originally so named for sound navigation and ranging, which measure range using 
sound waves.  

- short -range inexpensive all-weather distance measurement 
- Ideal for low-cost parking solutions 
- Unaffected by lighting precipitation  
- Comparison metrics 

- Range 
- FOV 
- cost 

Proprioceptive sensors 
- Global Navigation Satellite System (GNSS) and Inertial measurement units (IMU) 
- Direct measure of ego vehicle states 



- position , velocity (GNSS) 
- Varying accuracies: RTK, PPP, DGPS 
- Angular rotation rate (IMU) 
- Acceleration: (IMU) 
- Heading (IMU, GPS) 

- Wheel odometry sensor 
- Tracks wheel velocities and orientations 
- Uses these to calculate overall speed and orientation of car 

- Speed accuracy 
- Position drift 

Computing Hardware 
Self-driving brain 

- Take in all sensor data 
- Computes actions 
- Data processing (Drive PX/AGX, Intel Mobileye EyeQ) 
- Image processing, object detection, mapping 

- GPUs 
- FPGAs: field programmable gate array 
- ASICs: Application specific integrated chip 
- Synchronization hardware 

- To sync different modules and provide a common clock 

Hardware configuration design 
Sensor coverage requirements for different scenarios 

- Highway driving 
- Urban driving 

Overall coverage, blind spots 
Sensor fusion: remember that all of these sensors come in different configurations and have 
different ranges in fields of view over which they can sense. They have some resolution that 
depends on the instrument specifics and field of view.  
Assumptions: 

- Aggressive deceleration: 5m/s^2 
- Comfortable deceleration: 2m/s^2 
- Stopping distance: d=v^2/2a 

Where to place the sensors? 
- Need sensors to support maneuvers within our ODD 
- Two driving environments 



 

3 major maneuvers in highway analysis 
- Emergency stop 

- Longitude coverage: we are speeding at 120km/h and stopping distance should 
be 110 meters; aggressive deceleration 

 
- Lateral coverage: lane change to avoid a hard stop  

 

 
- Maintain speed: relative speeds are typically less than 30 kmph. 

- Longitude coverage: at least 100 meter in front. (16s for braking) 

 
- When merging, lateral coverage: usually current lane, adjacent lanes would be 

preferred 
 



 
- Lane change:  

 
- Longitude coverage: need to look forward to maintain a safe distance 
- Need to look behind to see what rear vehicles are doing 

 
- Lateral coverage: need wider sensing, e.g. what if a vehicle attempts to 

maneuver into the adjacent lane at the same time as we do. 

 
Overall 



 

Urban pilot 
6 kinds of maneuvers: emergency stop, maintain stop, lane change, overtaking, 
turning+crossing at intersections, passing roundabouts. 
For the first three types of maneuvers, the coverage analysis is pretty much the same as the 
highway analysis but since we are not moving as quickly, we don't need the same extent for our 
long-range sensing. 
 

- Overtaking 

 
Longitude coverage: if overtaking a parked or moving vehicle, need to detect incoming 

traffic beyond point of return to own lane. 
Lateral coverage: always need to observe adjacent lanes. Need to observe additional 

lanes if other vehicles can move into adjacent lanes. 

 
Intersections: 
Observe beyond intersection for approaching vehicles, pedestrian crossing, clearing exit lanes 
Requires near omni-directional sensing for arbitrary intersection angles. 



 
Roundabouts: 

- Lateral range: vehicles are slower than usual, limited range requirements 
- Longitudinal range: due to the shape of the roundabout, need a wider field of view. 

 
Overall 

 



Overall coverage and sensor analysis 
We have a need for full 360 degrees sensor coverage on the short scale out to about 50 meters 
and much longer range requirements in the longitudinal direction. We can also add even shorter 
range sensors like sonar which are useful in parking scenarios. 

 
Sensing requirements for an automated vehicle for highway and rural environments: 
https://repository.tudelft.nl/islandora/object/uuid:2ae44ea2-e5e9-455c-8481-8284f8494e4e  

Software architecture: 

 

Modular Software Architecture 
Standard software decomposition 

- Environment perception: Two key responsibilities, first, identifying the current location of 
the autonomous vehicle in space, and second, classifying and locating important 
elements of the environment for the driving task. 

https://repository.tudelft.nl/islandora/object/uuid:2ae44ea2-e5e9-455c-8481-8284f8494e4e


 
- Environment mapping: creates a set of maps which locate objects in the environment 

around the autonomous vehicle for a range of different uses, from collision avoidance to 
egomotion tracking and motion planning 

 
- Motion planning: The motion planning module makes all the decisions about what 

actions to take and where to drive based on all of the information provided by the 
perception and mapping modules. The motion planning module's main output is a safe, 
efficient and comfortable planned path that moves the vehicle towards its goal.  

 



- Controller: The controller module takes the path and decides on the best steering angle, 
throttle position, brake pedal position, and gear settings to precisely follow the planned 
path. 

 
- System supervisor: monitors all parts of the software stack, as well as the hardware 

output, to make sure that all systems are working as intended. It is also responsible for 
informing the safety driver of any problems found in the system. 

- Hardware supervisor: It continuously monitors all hardware components to check 
for any faults, such as a broken sensor, a missing measurement, or degraded 
information. Another responsibility of the hardware supervisor is to continuously 
analyze the hardware outputs for any outputs which do not match the domain 
which the self-driving car was programmed to perform under. 

- Software supervisor: It has the responsibility of validating this software stack to 
make sure that all elements are running as intended at the right frequencies and 
providing complete outputs. It also is responsible for analyzing inconsistencies 
between the outputs of all modules. 

 

Environment maps 
- Localization of vehicle in the environment 

- Localization point cloud or feature map. 
This map is created using a continuous set of lidar points or camera image 
features as the car moves through the environment. It is then used in 



combination with GPS, IMU and wheel odometry by the localization module to 
accurately estimate the precise location of the vehicle at all times.  
The difference between LiDAR maps is used to calculate the movement of the 
autonomous vehicle. 

- Collision avoidance with static objects 
- Occupancy grid map 

Use LiDAR points to build a 2D/3D grid map which indicates the location of all 
static, or stationary, obstacles. This map is used to plan safe, collision-free paths 
for the autonomous vehicle.  

- Path planning 
- Detailed road map: It contains detailed positions for all regulatory elements, 

regulatory attributes and lane markings. 

Safety assurance for AD 
Examples of AD crashes: Waymo, Uber, GM cruise,  
Uber crash: multiple things gone wrong 

- No realtime checks on safety drivers 
- After the woman was detected on the road (6 sec before) 

- First classified as unknown object 
- Then misclassified as a vehicle 
- Then a bike 
- 1.3 sec before, Volvo system tried to do emergency braking maneurver 

Uber crash report: 
https://www.ntsb.gov/investigations/AccidentReports/Reports/HWY18MH010-prelim.pdf  

Term 
Harm to refer to the physical harm to a living thing. 
Risk to describe the probability that an event occurs, combined with the severity of the harm, 
that the event can cause. 
Safety: absence of unreasonable risk of harm 
Hazard: potential source of unreasonable risk of harm 
 
Major hazard sources 

- Mechanical, like incorrect assembly of a brake system causing a premature failure 
- Electrical: like internal wiring leading to a loss of indicator lighting. 
- Hardware: chip errors 
- Software: bugs 
- Sensors: bad or noisy sensor data or inaccurate perception 
- Behavior: planning or decision-making, or because the behavior selection for a specific 

scenario wasn't designed correctly. 
- Fallback: the fallback to a human driver fails by not providing enough warning to the 

driver to resume responsibility or  

https://www.ntsb.gov/investigations/AccidentReports/Reports/HWY18MH010-prelim.pdf


- Cybersecurity: maybe a self-driving car gets hacked by some malicious entity. 

NHTSA: safety framework 
The National Highway Traffic Safety Administration: suggested area that OEMs should work on, 
not mandatory yet. It is a guideline. 

System engineering approach to safety 
Well-planned and controlled software development processes are essential, and the 
application of existing SAE and ISO standards from automotive, aerospace, and other relevant 
industries should be applied where relevant.  
Autonomy design: which requires certain components to be included and considered in the 
autonomy software stack, 

- Well defined ODD 
- Well tested OEDR 
- Reliable and convenient fallback 
- Follow traffic laws and obeyed within ODD 
- Avoid Cybersecurity threats 
- HMI: Well convey the status of the machine at any point in time to the passenger / driver 

Testing & Crash mitigation: which covers approaches to testing the autonomy functions and 
ways to reduce the negative effects of failures, as well as learning from them. 

- Strong and extensive testing program: simulation, close track testing, and public road 
driving 

- Crashworthiness: Crashes remain a reality of public road driving and autonomy systems 
that can minimize crash energy and exceed passenger safety standards in terms of 
restraints, airbags, and crash worthiness should be the norm.  

- Post crash: The car must be rapidly returned to a safe state, for example, brought to a 
stop with fuel pumps securing the fuel, first responders alerted, and so on. 

- Data recording: Black box. It is very helpful to have this crash data to analyze and design 
systems that can avoid the specific kind of crash in the future, and to resolve questions 
about what went wrong, and who was at fault during the event. 

- Customer education: sufficient training 

Waymo safety levels 
Behavioral safety: This includes decisions that follow the traffic rules, can handle a wide range 
of scenarios within the ODD, and maintain vehicle safety through it.  
Functional safety: Waymo ensures that the systems have backups and redundancies 
Operational Safety: Its interfaces are usable and convenient and intuitive.  
Crash safety: It designs systems that ensure minimum damage to people inside the car in the 
event of a crash. 
Non-collision safety: This refers to system designs that minimize the danger to people that 
may interact with the system in some way, first responders, mechanics, hardware engineers, 
and so on 



Waymo Safety processes 
- Identify hazard scenarios and potential mitigations 
- Use hazard assessment methods to define safety requirements 

- Preliminary analysis 
- Fault tree 
- Design failure mode & effects analysis 

- Conduct extensive testing to make sure safety requirements are met 

GM Cruise safety 

 
Control car production 
While Waymo relies on OEMs to design its vehicles and only discusses mechanical and 
electrical hazards related to its autonomy hardware, GM manufactures their cars entirely 
themselves and so can enforce a more integrated design with consistent quality standards 
throughout the self-driving hardware. 
Safety through comprehensive risk management and deep integration 

- Identify and address risk, validate solutions 
- Prioritize elimination of risks, not just mitigation 

All hardware, software systems meet 
- Self-set standard for performance, crash protection, reliability, serviceability, security and 

safety 
Safety processes 

- Deductive analysis: Fault tree analysis 
- Inductive analysis: design & process FMEA 
- Explorative analysis: hazard and operability study 

GM two major safety thresholds: 
- Fail safety: the redundant functionality ensures the vehicle stops normally when the 

primary system fails 
- SOTIF: all critical functionalities are evaluated for unpredictable scenarios 

GM: testing 
- Performance testing at different levels 
- Requirements validation of components, levels 
- Fault injection testing of safety critical functionality 



- Intrusive testing: such as electromagnetic interference, etc. 
- Durability testing and simulation based testing 

Analytical safety  
Ensuring the system works in theory and meets safety requirements found by hazard 
assessment. Namely, the system can be analyzed to define quantifiable safety performance or 
failure rates based on critical assessment of hazards and scenarios. In the end, analytic 
methods can only provide guidance on the safety performance of the self-driving system,  

Data driven safety 
Safety guarantee due to the fact that the system has performed autonomously without fail on 
the roads for a very large number of kms 
In the US, on average, 1 fatal collision per 146 M km, 1 injury collision per 2.1 M km, ~1 collision 
per 400,000 km 
https://safety.fhwa.dot.gov/rsdp/ddsa.aspx  

Question 
How many miles (years) would AVs have to drive to demonstrate with 95% confidence their 
failure rate to within  20% of the true rate of fatality per 146 M km? 
~400 years, with a fleet of 100 vehicles traveling all the time. 

Safety Frameworks for Self-Driving 
Probabilistic Fault Tree Analysis 

- Top down deductive failure analysis 
- Boolean logic 
- Assign probabilities to fault “leaves” 
- Use logic gates to construct failure tree 

Failure mode and effects analysis (FMEA) 
- Bottom up process to identify all the effects of faults in a system 

Failure mode: modes or ways in which a component of the system may fail 
Effects analysis: analyzing the effects of the failure modes on the operation of the system 
Categorize failure modes by priority 

- How serious are their effects? 
- How frequently do they happen? 
- How easily can they be detected? 

https://safety.fhwa.dot.gov/rsdp/ddsa.aspx


 
Risk Priority Number (RPN) 
 
Hazard and operability study (HAZOP) 

- Qualitative brainstorm process, needs “imagination” 
- Use guide words to trigger brainstorming (such as not, more, less, etc) 
- Applied to complex ‘processes’ 

- Sufficient design information is available and not likely to change significantly 

Automotive Safety Framework 
- ISO26262 Functional Safety Framework 
- ISO/PAR 21448.1 - Safety of Intended Functionality 

Functional Safety is defined as  
- Safety due to absence of unreasonable risk 
- Only concerned about malfunctioning system 

ISO 26262 defines Automotive Safety Integrity Levels (ASILs) 
ASIL-D most stringent, while ASIL-A least stringent 



Functional Safety Process 

 

SOTIF 
Failures due to performance limitations and misuse 

- Sensor limitations 
- Algorithm failures / insufficiencies  
- User misuse - overload, confusion 
- Designed for level 0-2 autonomy 
- Can be seen as an extension of FuSa 

- V-shape process 
- Employ HARA 

Kinematic Modeling in 2D 
Generally, vehicle motion can be modeled either by considering the geometric constraint that 
defines its motion or by considering all of the forces and moments acting on a vehicle. The 
first case is known as Kinematic Modeling. Especially at low speeds when the accelerations are 
not significant, Kinematic Modeling is more than sufficient to capture the motion of a vehicle. 
When we instead include knowledge of the forces and moments acting on the vehicle, we're 
performing Dynamic Modeling. Dynamic models can do a great job of estimating vehicle motion 
throughout the vehicle’s operating range, but are more involved to develop than kinematic 
models. 
 
Kinematic vs dynamic modeling 

- At low speeds, it is often sufficient to look only at kinematic models of vehicles 



- Examples: Two wheeled robot, bicycle model 
- Dynamic model is more involved, but captures vehicle behavior more precisely over a 

wider operating range 
- Example: dynamic vehicle model 

Coordinate frames 
- Right handed by convention 
- Inertial frame, global world system 

- Fixed usually relative to earth 
- Represented by East North Up (ENU) relative to a reference point nearby. 
- Or Earth-Centered Earth Fixed (ECEF), as is used in GNSS systems 

- Body frame 
- Attached to vehicle, origin at vehicle center of gravity, or center of rotation 

- Sensor frame 
- Attached to sensor, convenient for expressing sensor measurements 

 
Coordinate transformation 

- Conversion between inertial frame and body coordinates is done with a translation vector 
and a rotation matrix 

- Location of point (P) in body frame (B) 

 
- Location of point (P) in inertial frame (E) 

 
 



 
Homogeneous Coordinate Form 

- A 2D in homogeneous form 

 
- Transforming a point from body to inertial coordinates with homogeneous coordinates 

 
 
2D kinematic modeling 
The kinematic constraint is nonholonomic  

- A constraint on rate of change of degrees of freedom 
- Vehicle velocity always tangent to current path 

 
- Nonholonomic constraint  



 
- Velocity components 

 
Simple robot motion kinematics 

 
A state is a set of variables often arranged in the form of a vector that fully describe the system 
at the current time.  

Two-wheeled robot kinematic model 

 



 

 

 



 

Bicycle kinematic model 
The well-known kinematic bicycle model has long been used as a suitable control-oriented 
model for representing vehicles because of its simplicity and adherence to the nonholonomic 
constraints of a car. 

- Front wheel steering 

 
- Rear wheel reference point 



 

 
 



 

 



State space representation 

 

Dynamic Modeling in 2D 
Why is Dynamic Modeling important? 

- At higher speed and slippery road, vehicles do not satisfy no slip condition 
- Forces such as drag, road friction govern require throttle input 

Steps to build a typical DM 
- Coordinate frames 
- Lumped dynamic elements 
- Free body diagram 
- Dynamic equations 



 
Translation system 

- Deals with forces and torques 
- Need to equate all forces 
- Governed by Newton’s second law 



Example 

 
Rotational system 

- Inertial J 
- Torsional force T 
- Forces resisting that torsional force 

- Sprint force 
- Damping force 
- Inertia force 

 

 



Example 

 

Applications 
All components, forces and moments in 3D 

- Pitch, roll, normal forces 
- Suspension, drivetrain, component models 

Vehicle longitudinal motion 

 



Vehicle lateral motion 

 
 

General Dynamics: 
Ardema, Mark D. Newton-Euler Dynamics, Springer: Santa Clara University, Santa Clara 
(2005). 

Tong, David. Classical Dynamics University of Cambridge Course Notes (2004) 

Vehicle Modeling: 
Rajamani, Rajesh. Vehicle dynamics and control, Springer Science & Business Media (2011). 

Jacobson, Bengt, et al. Vehicle Dynamics, Vehicle Dynamics Group, Division of Vehicle and 
Autonomous Systems, Department of Applied Mechanics, Chalmers University of Technology 
(2016) 

http://www.damtp.cam.ac.uk/user/tong/dynamics/clas.pdf
http://www.damtp.cam.ac.uk/user/tong/dynamics/clas.pdf
http://www.damtp.cam.ac.uk/user/tong/dynamics/clas.pdf
http://publications.lib.chalmers.se/records/fulltext/244369/244369.pdf
http://publications.lib.chalmers.se/records/fulltext/244369/244369.pdf
http://publications.lib.chalmers.se/records/fulltext/244369/244369.pdf
http://publications.lib.chalmers.se/records/fulltext/244369/244369.pdf
http://publications.lib.chalmers.se/records/fulltext/244369/244369.pdf


Longitudinal vehicle model 

 

 

Or simplified as  

 
 



Simple resistance force models 

 

Powertrain modeling 
The vehicle powertrain determines the vehicle’s forward velocity and acceleration. 

 



 

Power flow in powertrain 

 



Engine dynamics 

 
 
 

Lateral Dynamics of Bicycle Model 

Vehicle model to bicycle model 
Assumptions: 

- Long velocity is constant 
- Left and right axle are lumped into a single wheel (bicycle model) 
- Suspension movement, road inclination and aerodynamic influence are neglected 

Lateral dynamics 
We use the vehicle center of gravity as the reference point for the dynamic model as it simplifies 
the application of Newton’s second law. 



 

Tire slip angles 

 



Front and rear tire forces 

 

Lateral and yaw dynamics 

 



Standard state space representation 

 

Vehicle Actuation 

 

Main control task 
To keep the vehicle on the defined path at the desired velocity. 



Steering model 

 

Simple steering model 
 

 



Real-world steering model 

 

Throttling / accelerating 

 



 

Characteristics plots 

 



 

Decelerating 

 
Basic functionality of braking system 

- Shorten stopping distance 



- Steering during braking through ABS system 
- Stability during braking to avoid overturning 

Tire modeling 
The tire is the interface between the vehicle and road. 
The wheel slip angle is the angle between the forward direction of the vehicle in the actual 
direction of its motion, which is denoted as Beta. 
 

 
Tire slip angle is the angle between the direction in which a wheel is pointing and the direction 
in which it is actually travelling. 

 
Relation between the tire slip angle and vehicle slip angle 



 
Slip ratio 

 
Tire model 

 



Tire modeling 
- Analytical  

- Tire physical parameters are explicitly employed 
- Low precision, but simple 

- Numerical  
- Look up tables instead of math equations 
- No explicit math form 
- Geometry and material property of tire are considered 

- Parameterized  
- Need experiments for each specific tire 
- Formed by fitting model with experiment data 
- Match experimental data well 
- Used well for vehicle dynamics simulation studies and control design 

 Linear tire model 

 



 
 

 



Proportional-Integral-Derivative Control (PID Control) 
Control development 

 
The dynamic and kinematic models for a vehicle aim to capture how the dynamic system 
reacts to input commands from the driver such as steering gas and break and how it reacts to 
disturbances such as wind, road surface and different vehicle loads. The effects of the inputs 
and disturbances on the states such as velocity and rotation rate of the vehicle are defined 
by the kinematic and dynamic models we developed.  
The role of the controller then is to regulate some of these states of the vehicle by sensing the 
current state variables and then generating actuator signals to satisfy the commands 
provided. 
 
For longitudinal control, the controller sensing the vehicle speed and adjust the throttle and 
break commands to match the desired speed set by the autonomous motion planning system. 
 
The plant or process model takes the actuator signals as the input and generates the output 
or state variables of the system. These outputs are measured by sensors and estimators are 
used to fuse measurements into accurate output estimates. The output estimates are compared 
to the desired or reference output variables and the difference or error is passed to the 
controller. The controller can be seen as a mathematical algorithm that generates actuator 
signals so that the error signal is minimized and the plant state variables approach the desired 
state variables. 

Plant System or Process 
System representation 



- The plant system can be linear or nonlinear 
- Plant representation: state-space form and transfer functions 

- State-space form which tracks the evolution of an internal state to connect the 
input to the output 

- Transfer function models the input and output directly 
- Linear time-invariant systems can be expressed using transfer functions 

 

Control or Compensator 
- Control algorithms can vary from simple to complex 
- Some simple algorithms often used in the industry: 

- Lead-lag controller 
- PID controller 

- More complex algorithms 
- Nonlinear methods, feedback linearization, backstepping, sliding mode 
- Optimization methods, model prediction control 



 

 
Closed loop response denotes the response of a system when the controller decides the inputs 
to apply to the plant model. For a step input on the reference signal we can define the rise time 
as the time it takes to reach 90 percent of the reference value. The overshoot as the maximum 



percentage the output exceeds this reference. The settling time as the time to settle to within 
five percent of the reference and the steady-state error as the error between the output and the 
reference at steady-state. 

 

Characteristics of P, I, D gains 

 
By carefully tuning the controller gains, we can use the benefits of all three to eliminate 
overshoot and still maintain very short rise and settling times. 



Step response 

 

Example: Second order system 

 
Classical control: Textbook by Prof. Bruce Francis (University of Toronto), covers Laplace 
Transforms, Bode Diagrams, Nyquist Plots 

http://www.scg.utoronto.ca/~francis/main.pdf


Longitudinal Speed Control with PID 

 
. 

- The first section is the perception of the road and the environment. This perception is 
captured by sensors and generates the input references for our system.  

- In the second layer, we have both path generation and speed profile generation, which 
in automotive circles is referred to as the drive cycle. These profiles are generated 
through the motion planning process. The path and the speed profiles are the reference 
inputs needed by our controllers. For longitudinal control, define the set point's, 
acceleration and deceleration that we'd like to be able to track precisely.  

- For both the lateral and longitudinal control of an autonomous vehicle, the only task that 
needs to be performed is to follow the plan as precisely as possible, and thereby 
minimize the error between the actual and reference path and speed. All other tasks 
required for autonomous driving or done by other parts of the system.  

- Finally, the controllers generate the input commands or actuator signals for the vehicle. 
As we've seen in the previous module, these include the steering for the lateral control 
and the throttle and break commands for longitudinal control. 

Examples: Cruise control 
Speed of the vehicle is controlled (by throttling and braking) to be kept at the reference speed. 



 
The controller can be split into two levels; 
A high level and a low level controller, although the low level controller is not essential to the 
control task. The high level controller takes the difference between 
the set point velocity and the vehicle actual velocity, and generates the desired vehicle 
acceleration to close the gap. The low-level controller gets the vehicle acceleration and 
generates a throttle or breaking actuation to track the reference acceleration. In practice, this 
two-stage approach allows us to go beyond just PID control and impose limits or profiles directly 
on the accelerations that are requested of the vehicle in order to maintain speed. It also allows 
us to separate the use of engine maps for generating a desired torque given the engine state 
from the cruise control input response. 
Upper level controller: Determines the desired acceleration for the vehicle (based on the 
reference and actual velocity). 

 
Lower level controller: throttle input is calculated such that the vehicle track the desired 
acceleration determined by the upper level controller 
Assumptions:  

- Only throttle actuations is considered, no braking 
- The torque converter is locked (gear 3+) 
- The tire slip is small (gentle longitudinal maneuvers) 



 
 
The low-level controllers seeks to generate the desired acceleration from 
the high level controller by increasing or decreasing the torque produced by the engine. This is 
controlled by the throttle angle, but is governed by the power train dynamics and the engine 
map, making it a nonlinear problem that can be a challenge for classic control methods. Instead, 
the desired acceleration is translated to a torque demand, and the torque demand is then 
converted to a throttle angle command. 
 
We can rearrange vehicle drivetrain dynamics equation to solve for the desired engine 
torque, given known load torques and the desired acceleration of the vehicle. Then, the 
steady-state engine map, which is generated in testing the engine at different operating points 
can be used to determine the throttle angle needed to produce the amount of torque demand 
required. In these standard maps, the desired engine torque and the current engine RPM 
(revolutions per minute) define the required throttle position, and can be interpolated if 
needed. This approach is a data-driven approximation, but it works quite well in practice. The 
approximation comes from the fact that the data points in the map are steady-state points while 
the power train is continuously changing its operating point to meet the current driving 
conditions. 
 
Finally, we can put the pieces of our vehicle controller together and simulate the control 
response to a step change in desired speed of our dynamic vehicle models with PID controllers. 
The PID gains are tuned by trial and error so that the vehicle speeds follow the reference 
velocity of 30 meters per second or 108 kilometers per hour. 
 
Because of the engine map non-linearity, we see some interesting artifacts in 



the vehicle response as it closes in on the reference speed. Gear changes could also cause big 
challenges for pure PID control. 

Feedforward speed control 
Feedback: closed loop 
Feedforward: open loop 
Combined feedforward and feedback control to improve performance 

- Feedforward controller provides predictive response, non-zero offset 
- Feedback controller corrects the response, compensate for disturbance and errors in the 

model 

 
The combination of feedback and feedforward control is widely used because of this 
complementary relationship. Because autonomous vehicles require non-zero steering 
commands to maintain a constant radius turn and a constant throttle or brake command to 
maintain constant speed or deceleration rates, feedforward commands are extremely beneficial 
in improving tracking performance in automated driving. 
Throttling and braking: 

- The output of the feedforward and feedback control blocks are the throttling or braking 
signals to accelerate or decelerate the vehicle (plant) to keep the vehicle velocity close 
to the reference velocity. 

The reference speed or drive cycle is defined by a higher level planner. And it is desirable that 
the vehicle follows the reference velocity precisely. The reference velocity is the input to the 
feedforward block, and the velocity error is the input to the feedback or PID control block. Both 
controllers produce two vehicle actuation signals, the throttle and the brake commands. Note 
that there is no low-level controller included in this block diagram, as we had in the pure PID 
feedback control from the previous video. The role of the low-level controller achieving the 
desired acceleration through the use of a mapping from accelerations to engine commands is 
now going to be handled by the feedforward block. 



Controller actuator 

 
The feedforward block gets only the reference signal as input, and its primary objective is to 
accurately set the inputs of the plan. To do this we can convert the entire longitudinal dynamics 
model into a fixed lookup table or reference map, that maps the reference velocity to the 
corresponding actuators signals assuming the vehicle is at steady state. This feedforward 
approach works well at steady state, but ignores the internal dynamics of the vehicle powertrain, 
and must also rely on the current vehicle state estimate to resolve some of the forces and 
dynamic models used. 



Feedforward table 

 

Comparing PID and PID+feedforward 
The key difference between the two responses is visible as the reference speed changes. 
Because the PID controller needs errors to exist before it can correct them, its response lags 
the feedforward approach, which immediately applies the relevant input reference values. 
The feedforward tracking is still not perfect, however, as the vehicle response 
is ultimately governed by its inertia, and the feedforward approach we've presented relies on 
steady state modeling of the car. As the feedforward model becomes more precise, the 
feedback components can focus purely on disturbance rejection, and speed profile tracking can 
be done with consistent precision. 

Lateral vehicle control 
One of the main concerns in autonomous vehicles is ensuring the vehicle can precisely follow a 
predefined path, executing the motion plan devised in the higher level planning module.  

Lateral control for an automobile 
- Define error relative to desired path from vehicle position 
- Select a control design between the vehicle position and the appropriate desired path 

coordinates that drives errors to zero and satisfies steering angle limits and dynamics 
limitations of vehicle and desired ride characteristics such as maximum lateral 
acceleration and minimum jerk. 



- Add dynamic considerations as control command must be cognizant of the available tire 
forces and not exceed the capabilities of the vehicle when correcting for tracking errors 

The reference path 
The reference path is a fundamental interface between the planning system in the lateral 
controller 

- Track 
- Straight line segments 

The easiest approach is to define a sequence of straight line segments by requiring a sequence 
of end point vertices that are connected linearly. This path definition can be very compact and 
easy to construct,assuming points are well spaced and the environment allows for mostly 
straight line motion, as in a Manhattan grid of roadways. However, the path includes heading 
discontinuities, which make precise tracking a challenge with a steered vehicle.  

- Waypoints 
A refinement of the line segment approach is to provide a series of tightly spaced waypoints. 
This spacing is usually fixed in terms of distance or travel time. The relative position of the 
waypoints can be restricted to satisfy an approximate curvature constraint.  Waypoint paths are 
very common, as they are easy to work with and can be directly constructed from state 
estimates or GPS waypoints collected in earlier runs of a particular route. 

- Parameterized curves 
It is also possible to define a path using a sequence of continuous parameterized curves, which 
can be either drawn from a fixed set of motion primitives or can be identified through 
optimization during planning. These curves provide the benefit of continuously varying 
motion, and can be constructed to have smooth derivatives to aid in the consistency of error 
and error rate calculations. 

- Main goal 
- Heading path alignment 
- Elimination of offset to path 

Two types of control design 
- Geometric controllers: rely on the geometry and coordinates of the desired path and the 

kinematic models of the vehicle. 
- Pure pursuit (carrot following) 
- Stanley 

- Dynamic controllers 
- Model Predictive Controller (MPC) 

- Able to handle a wide variety of constraints  
- identify optimized solutions that consider more than just the current 

errors. 
- Other control systems 

- Sliding mode, feedback linearization 



Plant model 
Vehicle (bicycle) model & parameters 

- All state variables and inputs defined relative to the center of front axle 

 

Driving controller 
- Controller error terms 

- Heading error 
- Component of velocity perpendicular to trajectory divided by ICR radius 
- Desired heading is zero 

=>  
- Crosstrack error 



-
The rate of change of the crosstrack error can be calculated by extracting the  lateral 
component of the forward velocity. From this equation, we can see that as the velocity 
increases, the crosstrack error changes more quickly, meaning that smaller steering angles are 
needed to correct for the same size crosstrack errors. 

Reference 

J. Jiang and A. Astolfi, "Lateral Control of an Autonomous Vehicle," in IEEE Transactions on 
Intelligent Vehicles, vol. 3, no. 2, pp. 228-237, June 2018. URL: 
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8286943&isnumber=8363076 

Geometric steering control - pure pursuit 
- It exploits geometric relationship between the vehicle and the path resulting in compact 

control law solutions to the path tracking problem 
- Use of reference point on path to measure error of the vehicle, can be ahead of the 

vehicle 
Pure pursuit  

- It consists of geometrically calculating the trajectory curvature 
- Connect the center of rear axle location to a target point on the path ahead of the vehicle 

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8286943&isnumber=8363076


 
- Steering angle determined by target point location and angle between the vehicle’s 

heading direction and lookahead direction 

-  
- Using the bicycle model the steering angle is calculated as  

-  
- Crossback error (e) is defined as the lateral distance between the heading vector and 

the target point  



 
- Pure pursuit is a proportional controller of the steering angle operating on a crosstrack 

error some look ahead distance in front of the vehicle 

-  

-

 

Stanley controller method 
- Uses the center of the front axle as a reference point 
- Look at both the error in heading and the error in position related to the closest point on 

the path 
- Define an intuitive steering law to  

- Correct heading error 
- Correct position error 
- Obey max steering angle bounds 

Heading control law 
- Combine three requirements 



 
- Steer to align heading with desired heading (proportional to heading error ) 

 
- Steer to eliminate crosstrack error 

- Essentially proportional to error 
- Inversely proportional to speed 
- Limit effect for large errors with inverse tan 
- Gain k determined experimentally  

 
- Maximum and minimum steering angle 

 
Combined steering law 

- Stanley control law 

 
- For large heading error, steer in opposite direction 

- The larger the heading error, the larger the steering correction 
- Fixed at limit beyond maximum steering angle, assuming no crosstrack error 

- For large positive crosstrack error 

 



- As heading changes due to steering angle, the heading correction counteracts 
the crosstrack correction, and drives the steering angle back to zero (This large 
value clamps the steering command to the 
maximum and the vehicle turns towards the path.) 

- The vehicle approaches the path, crosstrack error drops, and steering command 
starts to correct the heading alignment 

-  
Error dynamics 

- The error dynamics when not at the maximum steering angle are 

 
- For small crosstrack error, leads to exponential decay characteristics 

 
- The most interesting aspect of this investigation is that the decay rate is completely 

independent of the speed. So faster vehicles will travel farther while converging to the 
path, but will converge to the path at the same time as slower moving vehicles. 

Adjustment 
- Low speed operation 

- Inverse speed can cause numerical instability 
- Add softening constant to controller 

 



- Extra damping on heading 
- Avoid Stanley's response overly aggressive at high speeds,  
- Becomes an issue at higher speed in real vehicle 

- Steer into constant radius curves 
- Improves tracking on curves by adding a feedforward term on heading 

Stanley becomes a useful tool for moderate driving tasks as long as the vehicle avoids 
exiting the linear tire region.  
More info about pure pursuit and Stanley controller: 

- Snider, J. M., "Automatic Steering Methods for Autonomous Automobile Path Tracking", 
Robotics Institute, Carnegie Mellon University, Pittsburg (February 2009).  

- Hoffmann, G. et al., "Autonomous Automobile Trajectory Tracking for Off-Road Driving: 
Controller Design, Experimental Validation and Racing", Stanford University, (2007) 

Model Predictive Control 
- Numerically solving an optimization problem at each time step 
- Receding horizon approach 
- Advantage: 

- Straightforward formulation 
- Explicitly handles constraints 
- Applicable to linear or nonlinear models 

- Disadvantage 
- Computationally expensive 

Receding horizon control 
- Pick receding horizon length (T) 
- For each time step t 
- Set initial step to predict predict state x_t 

- Perform optimization over finite horizon t to T while traveling from x_{t-1} to x_t 
- Apply first control command u_t form optimization at time t 

 



MPC block diagram 

 

Linear MPC formulation 
- Linear time-invariant discrete time model 

 
- MPC seeks to find control policy U 

 
- Objective function: regulation 

 
- Objective function: tracking 

 



Solution 

 

Nonlinear MPC formulation 
- Constrained nonlinear finite horizontal discrete time case 

 
- No closed form solution, must be solved numerically 

Vehicle lateral control 



 
MPC 

- Cost function -minimize 
- Deviation from desired trajectory 
- Minimization of control command magnitude 

- Constraints - subjective to 
- Longitudinal and lateral dynamic model 
- These costs and constraints define the optimization used in our example, which 

then gets converted into actual vehicle commands by the low-level controller. 
- Tire force limits 

- Can incorporate low-level controller, adding constraints for 
- Engine map 
- Full dynamic vehicle model  
- Actuator models 
- Tire force models 

More about MPC 
Falcone, P. et al., "Predictive Active Steering Control for Autonomous Vehicle Systems", IEEE 
(2007) 
 


